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Imitate and optimize modern control 
algorithms for forestry cranes by means of 
artificial neural networks
Marco Wydra, Andreas Bauer, Chris Geiger, Marcus Geimer

Modern hydrostatic function drives for agricultural and forestry machines require complex 
control algorithms. Electric controls offer significant energy and control advantages over the 
state of the art, such as reduced tendency to oscillate or implementation of a variable pow-
er limitation. Therefore, new algorithms are essential for sustainable optimization of future 
machines. The paper investigates a method to automatically transfer an existing control al-
gorithm to an artificial neural network (ANN), which will be optimized by the Pattern Search 
algorithm afterwards. The method was applied to a forestry crane with an electro-hydraulic 
flow-on-demand control. After 41 generations of optimized parameter sets, the ANN control 
already shows a behavior comparable to the reference control. With this approach it is possi-
ble to transfer deterministic algorithms into stochastic algorithms with comparable transfer 
functions, which can then be optimized using machine learning methods.
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Oil hydraulic drives have been an integral part of agricultural and forestry machinery for decades. 
Hydrostatic drives are used for both traction drive and function drive (Geimer and Pohlandt 2014). 
In this paper hydrostatic drives for the working function of forestry machines are considered. Due to 
socio-ecologically motivated optimization of technical systems and the electrification of machines, the 
development and use of energy-efficient drive systems is gaining in importance. The aim is to reduce 
pollutant emissions (Hänel et al. 2015) and increase the operating time of machines. Especially with 
regard to battery-powered machines, locally installed energy resources are limited due to low energy 
density (Altenburg et al. 2017). Numerous international research projects already investigated a 
wide variety of approaches to increase the efficiency of hydrostatic function drives in mobile ma-
chinery (Esders 1996, Eriksson 2010, Axin 2013, Dengler 2015, Vukovic et al. 2017, Zhang et al. 
2019). Many of the solutions presented have in common that the system complexity, including their 
control tasks, increases compared to the state of the art. So, suitable algorithms have to be developed. 
Approaches from topics like autonomous driving, medical technology or image recognition and pro-
cessing indicate a trend towards the use of artificial intelligence (AI) (Buxmann and Schmidt 2019). 

The aim of this paper is to show a method to imitate existing control algorithms by means of artifi-
cial neural networks (ANN). First an ANN will be trained by supervised learning and then optimized 
by reinforcement learning. The use of the method is shown for an electro-hydraulic flow-on-demand 
control (eBSS) with independent metering. A comparison to the state of the art for hydrostatic func-
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tion drives in agricultural and forestry machines shows the energy saving potential for this complex 
control strategy. Finding a solution is presented, verified and finally discussed on the basis of a forest-
ry crane. For this purpose, the control task is named, significant changes in the hydraulic system are 
shown and different control algorithms are tested and compared using the MOBiL method (Pohlandt 
2018).

Hydrostatic function drives in agriculture
The hydrostatic function drive of a forestry crane and other agricultural machines is usually operated 
as a valve control system with applied pressure or flow rate (Backé and Baum 2013). A pump provides 
necessary hydraulic power for the hydraulic circuit in form of pressure p and flow rate Q. Actuators 
with linear as well as rotary motion convert hydraulic power into mechanical power. Valves between 
pump and actuator(s) adjust both pressure and flow rate to the demand. In modern hydraulic function 
drives, proportionally adjustable directional valves are used for power adjustment (Findeisen 2006). 

The advantage of simultaneously adjusting meter-in and meter-out oil flow of an actuator is the re-
duced effort to realize a stable and robust control system. In addition, these directional valves can be 
manufactured simply and cost-effectively. The limitation of control possibilities due to mechanically 
coupled meter-in and meter-out flow rate as well as the way of power supply lead to significant power 
losses in partial load operation, see below. Each power loss increases the consumption of primary 
energy. So, its reduction contributes to sustainable improvement of the entire system.

Renius (2019) divides valve control systems in open center systems (OCS) and closed center sys-
tems (CCS). OCS are usually applied with a constantly driven pump without adjustment, so that the 
maximum flow rate Qmax is constantly delivered. If the directional valves are not actuated, the oil can 
flow with less pressure losses back into the tank via a neutral circuit. CCS are characterized by the 
fact that in zero position the directional valves have no neutral circuit. Therefore, the flow rate must 
either be variably adjusted or diverted through a separate bypass. Among others, CCS are operated as 
constant pressure systems (CPS) or as load-sensing systems (LSS) (Figure 1).



LANDTECHNIK 75(2) 120

In OCS the pump pressure pP is calculated by the sum of the highest actuator pressure pL,max and 
the pressure losses at the directional valve ∆pDV. In CPS pP is hold to a fixed maximum pressure val-
ue pmax. In LSS pP goes by the highest actuator pressure pL,max plus ∆pDV and a constant LS control 
pressure difference ∆pLS. The value ∆pLS is typically approx. 20 to 30 bar depending on the operating 
point and system (Scherer 2015). 

The electro-hydraulic flow-on-demand control (eBSS) considered in this paper represents an alter-
native drive technology to the state of the art. (Scherer 2015) describes the mode of operation and 
lists advantages and disadvantages. Comparable to OCS, in eBSS systems pP depends on pL,max and 
∆pDV. For the actuator with highest load, the pressure loss from pump via directional valve of the 
main control block is then only approx. 8 to 10 bar.

To be able to compare the power requirements of the four systems, the hydraulic pump power PP 
is calculated. The hydraulic power is generally calculated as product of a pressure difference ∆p and 
the flow rate Q (Equation 1). Losses through fittings or pipes can be considered and calculated with 
∆pL,other.

P = ∆p ∙ Q (Eq. 1)

Figure 1: Schematic diagram of different hydraulic controls; according to Renius (2019)
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In Figure 2 the relationship between the provided pump power, the actuator power and losses are 
shown graphically using a p-Q diagram. The pump power is calculated by the product of ∆p = pP − pT 
and QP. It represents the total area in Figure 2. The white areas represent the effective power of two 
actuators with different pressure levels ∆pA,n = pn − pT; n = 1,2 and their flow rate demand QA,n; 
n = 1,2. The difference between pump power and actuator power (grey) represents throttle losses in 
the system. These throttle losses can be divided into system inherent pressure losses ∆pL, losses at 
the directional valve ∆pDV and losses due to the LS control pressure difference ∆pLS. On one hand, 
system inherent pressure losses always occur when the pressure levels between actuators operated 
in parallel are not the same and high-pressure must be throttled down to actuator level. On other 
hand, ∆pL is unused pump power like shown in Figure 2, OCS, right hand side. It can be seen that the 
potential for energy-efficient operation is highest for the eBSS compared to other systems mentioned 
above. Also, it is independent of the operating point. Scherer (2015) estimates a saving potential with 
eBSS up to 14% compared to a hydraulic-mechanical LSS. 

Requirements on control engineering
The actuator velocity vn is set by the user via the control of the directional valves in the main control 
block. Controlling these directional valves causes opening of metering edges. Due to the pressure dif-
ference between actuator pressure pA and pump or tank pressure ∆pME,n = pP − pA,n | pA,n − pT flow 
rate Qn arises. The pressure level pA of an actuator is primarily determined by load. The load can act 
in direction of movement (active loads) or against it (passive loads). Passive loads are supported by 
the pump. Active loads have a self-accelerating effect and can lead to an unintended reaction of the 
actuator, which can evoke an unsuitable operation behavior for the operator. A suited control should 
avoid that (Steindorff 2010). 

Figure 2: p-Q diagrams of the OCS, CPS, LSS and eBSS system; Losses from pipes or similar ∆pL,other are not shown 
in the diagram; according to Scherer (2015) 
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The outgoing flow rate Qout of a hydraulic cylinder is ideally determined on the cylinder surface 
ACyl,out for a known actuator velocity v. Thus, according to Equation 2, the metering edges flow sur-
face Aout (y) and the pressure difference across the meter-out edge ∆pout are left as control variables 
for v. Flow coefficient αD and oil density ρ are assumed to be constant. y represents the displacement 
of valve spool.

 (Eq. 2)

According to Equation 2, a self-acceleration of the actuator due to active loads can be avoided 
under following condition: necessary pressure difference at meter-out edge for movement is greater 
than load pressure ∆pout > pA − pT. Then, the necessary pressure difference ∆pout for the required 
flow rate Qout is composed of load pressure pA and a pressure difference additionally set by the pump 
∆p+ = β ∙ (pP − pA). ∆p+ acts on the outlet surface of the actuator, so pump pressure needs to be mul-
tiplied by transform factor β. For a differential cylinder β is the ratio of the two surfaces ACyl,in to 
ACyl,out. For double rod cylinders or rotary drives β = 1.

Commercially available solutions to prevent actuators from self-accelerating due to active loads 
are specific geometry of Aout (y) of directional valves or the use of lowering brake valves (LBV) be-
tween main control block and actuator. In order to prevent self-accelerating at any operating point 
by adjusting valve spool geometry Aout (y), the design results in a high dynamic pressure ∆pout. So, 
active loads are always handled like passive loads by the system. For valves with a fixed ratio between 
meter-in and meter-out edge, this is an obvious and cost-effective solution. From an energy point of 
view, for partial load operation this is the most inefficient of the two solutions mentioned above. Even 
for small loads, a high pump pressure pp is necessary due to ∆p+. 

Figure 3 shows the symbol of an LBV. When the cylinder extends, the oil flows via the check valve 
from main control block 1 to cylinder port A. If the cylinder retracts under load, a pressure arises 
in the connection from main control block 2 to cylinder port B to open the LBV. After exceeding a 
threshold, oil can flow from cylinder port A to main control block 1. The control pressure ∆p+ required 
to open the LBV is provided by the pump. A pressure intensification reduces the required pressure 
level of the pump. In this case Aout (y) of the directional valve in the main control block is designed 
to minimize throttling losses. By reducing pP at equal QP the required pump power is reduced and 
the system becomes more energy-efficient. Due to its design, the hydraulic-mechanically operated 
LBV can only operate with low vibration at specific operating points. Applied to entire working range, 
designing proves to be a challenge for developers (Rocca 2003). Both, use of an adjusted valve spool 
geometry and use of a LBV represent the state of the art for hydrostatic function drives in agricultural 
and forestry machines. 
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Consequently, an energy optimization for controlling active loads independent of operating point 
is not feasible with the current state of the art. Investigation show that independent meter-in and 
meter-out control is a possible solution. Control algorithms for function drives with independent me-
tering have been investigated in literature extensively. Exemplary named are Eriksson( 2010), Axin 
(2013) and Kolks and Weber (2016). Weiss and Wydra (2019) show that active loads can be con-
trolled in an energy-efficient way using independent metering. Depending on actuator and load case, 
potential savings compared to state of the art can be up to 80%. Further, a modified control strategy of 
the control system described in Wydra et al. (2017) is applied. This control strategy will be referred 
to as Reference Control.

Application, reference cycle and research object
The operating ratio of hydrostatic function drive and traction drive of a mobile machine vary depend-
ing on type and application. In this paper, the function drive of a forwarder will be examined in more 
detail, because the portion of the forestry crane in the overall harvesting process of fresh wood deter-
mined by Manner et al. (2016) is between 80% and 85%. The remaining operating portion is allocated 
to traction drive. The Power converted in hydrostatic function drive is accordingly relevant for inves-
tigations of energy efficiency and controllability. The forestry crane has six hydraulic cylinders and 
one rotating actuator. One hydraulic cylinder each for inner boom, outer boom, telescope and grapple. 
The swivel is driven by two identical hydraulic cylinders (Figure 4).

Figure 3: Structure of a system with lowering brake valve; according to Rocca (2003)
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A load cycle according to Geiger und Geimer (2017) is used as reference, which describes the 
loading activity of a forwarder. In order to reduce complexity of the model, the rotary drive at the end 
of telescope and the telescope itself are not actuated in simulation. During a load cycle, the grapple is 
usually controlled independently of the movement of the crane tip. Therefore, time slices with simul-
taneous actuation of grapple and other actuators are very small. In that case, the grapple function can 
be neglected for the present control development and intention of investigation. 

The motion sequence of the loading activity is depicted in Figure 5. As can be seen on the left 
hand side, the crane first moves out of stanchion basket towards tree trunk (Phase I). There the log is 
gripped (phase II), transported back over stanchions into stanchion basket (phase III) and deposited 
(phase IV). On the right hand side, associated travel paths of inner boom cylinder (IBC), outer boom 
cylinder (OBC) and swivel cylinders (SWC) are shown. The motion sequences were created by record-
ing several test runs. 

Figure 4: Representation of a forestry crane and its six cylinders and the rotary drive; according to (Geiger und 
Geimer 2017)

Figure 5: Representation of reference cycle according to Geiger and Geimer (2017); sequence of working movement 
(left); travel paths of inner boom cylinder, outer boom cylinder and swivel cylinder (right)
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The actuators IBC, OBC and SWC are operated by an open hydraulic circuit with an eBSS accord-
ing to Scherer (2015). Figure 6 shows a schematic diagram of the hydraulic circuit. The function 
drive of conventional control consists of an electro-hydraulically adjustable pump, which is driven at 
constant speed. The main control block consists of two electrically controlled 8/3-directional valves, 
which adjust flow rate to actuators OBC and SWC. The metering edges pump – actuator connection A 
(PA), pump – actuator connection B (PB), actuator connection A – tank (AT) and actuator connection B 
– tank (BT) are controlled simultaneously due to a common valve spool. The IBC piston chamber is 
connected either to pump or tank by an electrically controlled 4/3-directional valve. The rod-side con-
nection of IBC is connected directly to tank line, which is preloaded by 5 bar. The pump connection 
of all directional valves is equipped each with a pressure compensator valve downstream of the main 
metering edge (Figure 6). The pressure compensator valve compares local load pressure per actuator 
with highest load pressure reported by LS line. Together, the pressure compensator valves ensure 
load-independent control of pump flow rate to all actuators and an even flow rate reduction for all ac-
tuators during undersupplied system. The actuators are directly connected to the main control block. 

For this investigation, the conventional control system was mapped virtually using the MOBiL 
method (Wydra et al. 2018). The 1D simulation model consists of a coupled multi-body simulation 
(MBSim) of the forestry crane, in common with a hydraulic simulation (HSim) and a control sim-
ulation (SSim). The MBSim model was created and validated with Matlab Simulink within the re-
search project Forwarder2020. For the HSim, an eBSS was built and parameterized with the program 
DSHplus. The SSim represents the investigated control strategies conventional control, reference con-
trol and ANN control. The following simplifications apply to the simulation model: 

 � The pump is driven at a constant speed.
 � The dynamics of directional valves are described by PT1 element.
 � Dynamic influences by fittings, pipes and hoses are neglected and only shown as capacities be-

tween two elements (valves, pump, etc.).

Figure 6: Hydraulic circuit of a forestry crane with an eBSS according to Scherer (2015); named conventional control
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 � The grapple, telescope and rotary drive are not operated during a loading cycle.
 � The control strategies conventional control, reference control and ANN control are only applied 

to OBC, as this cylinder represents the changes associated with different control strategies. On 
one hand, in contrast to the SWC, the OBC is continuously controlled during loading cycle in 
the majority of cases. On other hand, by substituting the 8/3-directional control valve into two 
4/3-directional control valves, the changes are easier to understand than on IBC, which rod-side 
connection has no valve.

 � A change in load caused by picking up the log during loading cycle is not considered, as the load 
is supported significantly on IBC due to crane kinematics. Internal tests have shown that the 
pressure in IBC is increased by approx. 13 bar to 37 bar and in OBC by approx. 1 bar to 19 bar 
during a movement under load of a 300 kg log weight. 

The schematic of overall simulation is depicted in Figure 7. Recorded current values IIBC, ISWC are 
used as control signals for the actuators IBC and SWC. These are converted into a valve spool displace-
ment yIBC, ySWC. Afterwards these signals are transformed by a PT1 element and finally passed on to 
the metering edges of the directional valves, which are designed as orifices.

For OBC an operator model according to Thiebes and Vollmer (2011) is implemented. The opera-
tor model calculates a control signal for SSim. This control signal un can in reality be interpreted as 
a joystick signal. In eBSS systems flow rate is set by control signal directly, which correlate with a 
percentage value of maximum flow rate Qn,max. The operator model has already been used by Scher-
er (2015) and Wydra et al. (2017) to operate actuators in eBSS systems. The control signal uOBC 
calculated by the operator model is processed by SSim model into valve spool displacement yOBC and 
forwarded via PT1 element to metering edges ATOBC, PAOBC, PBOBC and BTOBC, of the outer boom cyl-
inder directional valve. The metering edges are modelled as orifices. The HSim calculates pressures 
pn and actuator forces Fn. This is done using cylinder paths xn and cylinder speeds 

.xn calculated by 
MBSim and valve spool displacements yn from SSim. 

Modification of conventional system
Weiss and Wydra (2019) describe how eBSS can be equipped with separate metering edges by mod-
ifying directional valves of the main control block. Independent metering between actuators inlet 
and outlet was achieved by installing two 4/3-directional valves per actuator instead of one 8/3-di-
rectional valve (Figure 8, left). This enables a new degree of freedom in system control. In order to 

Figure 7: Structure of the overall simulation and signal flow between blocks
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reduce resulting complexity, the metering edges PA and AT as well as PB and BT are selected in such 
a way that geometrically the same relationship between valve spool displacement yA/B and metering 
edges flow surfaces AP/T (yA/B) exists. In Figure 8 (right), this modification between the system with 
conventional control (Scherer 2015) and with reference control (Weiss und Wydra 2019) is shown.

The control strategy according to Wydra et al. (2017) enables operating an actuator with both 
passive and active loads securely. The control strategy provides that the meter-in edge is directly con-
trolled by an open loop control. The meter-out edge is set by a pilot operated closed loop control. The 
pilot control is proportional to the control signal of the meter-in edge. The resulting control behavior 
corresponds to that of conventional control. Thus, an active load is always handled by the system 
like a passive load. In parallel, the meter-out edge is continuously opened by regulating pressure on 
actuator inlet-side, so that the required pump pressure is reduced. Thus, the system is energetically 
optimized during movement. The control concept is shown in the Figure 9 as a block diagram. This 
control strategy uses the control signal specified by the operator as input variables un, a defined pres-
sure threshold pnom,in,n for actuator inlet-side and the current actuator pressures pA,n, pB,n at actuator 
connections A and B. With this information, the directional valve spool displacement yA,n, yB,n of the 
main control block are calculated. In the HSim model these spool displacements are converted by 
look-ups into metering edges flows surfaces AAT,n, APA,n, APB,n and ABT,n.

Figure 8: Replacement of the 8/3-directional valve by two separately controllable 4/3-directional valves (left);  
according to Wydra et al. (2017); Adjustment of metering edges flow surface (right)
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In Figure 10, the result of the control strategy specified in Wydra et al. (2017) is explained in more 
detail. The control signals for the inlet and outlet of an actuator on a test rig are shown on the left side. 
The actuator inlet and outlet pressures are shown on the right side. The conventional control system 
with coupled metering edges is represented by the blue lines. The reference control system with sep-
arate metering edges is represented by the red lines. The hydraulic cylinder extends between second 
2 and 5 and retracts between second 7 and 10. During the extending movement, there is a passive 
load. The control signals of meter-in edge and meter-out edge are proportional. In Figure 10 (left) it 
can be seen that the meter-out edge yB,HM (red) is opened further than yB,konv (blue). This reduces the 
required pump pressure for passive loads, Figure 10 (right). During the retracting movement it can 
be seen that with yA,HM the pilot control initially sets a similar valve spool displacement for the me-
ter-out edge as yA,konv. The pressure control leads to an opening of the meter-out edge in the further 
course of the movement yA,HM, Figure 10 (left). From approx. 8.5 s a stationary value is reached. From 
there, yA,HM is more open than yA,konv, which leads to a reduced pump pressure (Figure 10, right). 

Figure 9: Control structure of the reference control according to Wydra et al. (2017)
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Method for creating the artificial neural network
After the hydraulic system has been presented, this and the following sections describe the procedure 
as well as the results for imitating and optimizing using artificial neural networks (ANN). A combi-
nation of supervised and reinforcement learning is applied for creation and training the ANN. The 
process is shown in Figure 11. Supervised learning is used to train the ANN to target behavior. This 
is done using training data consisting of input and output data of the reference control system. To 
generate training data, systematically varied input data, which are specified in the entire parameter 
range of the reference control, are simulated. Then, the output data are recorded. The primary goal 
is to determine suitable network parameters and initial weights. The network parameters sought are 
the number of hidden layers and the number of neurons per layer. 

While reinforcement learning, step-by-step changes are made to the weights of the All-Up ANN. 
With each change, a new simulation is run and its results are evaluated positively or negatively 
(Goodfellow et al. 2018). More detailed explanations of combination of two learning methods as well 
as advantages and disadvantages are introduced by Blume and Jakob (2009).

Identification of network parameters with supervised learning
The control strategy according to Wydra et al. (2017) uses closed-control loops. To be able to map 
closed-control loops, the ANN needs a time response. This can be realized, for example, via external, 
time-delayed feedback (Berns 1994). A feedback of many neurons leads to a large number of param-
eters. The theoretical time needed to identify the optimal weights grows exponentially with the num-
ber of weights. Thus, as few feedbacks as possible are used. 

I. Identification of 
net parameter and 
initial weights using 
supervised learning

II. Optimizing of 
All-Up ANN with 

reinforcement learning 

III. Test of 
All-Up ANN

Figure 11: Sequence for creating ANN control
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To achieve this, the entire control task is divided into small, separate and independent subtasks. 
For each subtask a separate Sub-ANN is trained. The individual Sub-ANN are then put together and 
considered as one All-Up ANN. The control task can therefore be executed by an All-Up ANN with a 
small number of parameters. This has a positive effect on computing time required for optimization 
during later reinforcement learning. Figure 12 shows the procedure for creating a structure-opti-
mized Sub-ANN by supervised learning. Steps 1) to 3) are first created manually by analysis the 
control strategy to be imitated. In this case, the reference control. The output and input data of the 
reference control are scaled to a range from -1 to 1 for each Sub-ANN according to its maximum and 
minimum data. In steps 4) and 5), network parameters of the Sub-ANN are automatically increased 
step by step until the error square between training data and results of Sub-ANN is less than 0.02% 
of maximum starting value. Overfitting of individual Sub-ANN initially is irrelevant, since weights of 
the All-Up ANN are changed in further course of optimization.

Classical Feedforward Multi-Layer Perceptron (MLP) networks are used as Sub-ANN. A Tansig 
activation function is used in the first hidden layers. A linear activation function is used in the last 
hidden layer. A weighted sum with absolute terms is used in all hidden layers to determine the po-
tential (Mikut 2008). The number of training data per network and resulting network parameters are 
listed in Table 1.

Table 1: Final data of the Sub-ANN

Sub-ANN 1 Sub-ANN 2 Sub-ANN 3
Inputs Sub-ANN ∆p  

time-delayed output of 
Sub-ANN 1

∆p  
Output Sub-ANN 1

Qnom  
Output Sub-ANN 2

Number of training data 316,201 316,201 56,481
Number of neurons  
hidden layer 1

2 2 4

Number of neurons  
hidden layer 2

1 1 1

Error square related to  
maximum output quantity

2.854 ∙ 10 -12 1.869 ∙ 10 -10 2.757 ∙ 10 -9

1) Definition of 
subtask

2) Create respective 
training data with 
reference control

3) Selection of initial
net parameters:

- Number of neurons
- Number of layers

4) Training of ANN

5) Root mean
square error small 

enough?
Yes

Adapt net 
parameters

NoUseage of ANN

Figure 12: Procedure for supervised learning according to Bauer (2019) 
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The resulting All-Up ANN for mapping the reference control is shown schematically in Figure 13. 
The All-Up ANN consists of three Sub-ANN with each two hidden layers. Together they contain 11 
neurons. In total there are 28 weights.

Optimization of artificial neural network with reinforcement learning
To optimize the All-Up ANN, its weights are iteratively changed with the Pattern-Search algorithm 
according to Figure 14. The target variables to be optimized are the required pump energy E per 
cycle and the control deviation γ. This describes the deviation between nominal and actual velocity 
of the actuator. Details of the algorithm used are described in MathWorks (2019a, b). The change of 
weights is determined by an iterative evaluation of the overall system like described by Bauer (2019). 
Each generation consists of a parameter set of weights.

Input 1
Delta_p

Input 2 
Q_nom

Output 1
A

Gain

Tansig function

Linear function

Value of prior time step

Figure 13: Structure of All-Up ANN control consisting of several Sub-ANN

Creation of initial 
parameter set for 

supervised learning

Calculation of new 
parameter sets 
based on best 
parameter set

Calculation of fitness 
for all parameter sets

Termination
criterion
reached?

Start 
algorithm

Terminate 
learning

NoYes

Figure 14: Sequence of reinforcement learning using the Pattern-Search algorithm according to Bauer (2019) 
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The entire system is simulated with six different optimization cycles for each parameter set. Each 
optimization cycle is evaluated with regard to its energy consumption E and its control deviation γ. 
The energy consumption on the hydraulic side is calculated by integration of necessary pump power 
(Equation 3).

 
 (Eq. 3)

The control deviation γ is calculated as the total difference between nominal and actual velocity of 
an actuator (Equation 4).

 (Eq. 4)

The All-Up ANN control uses the control signal un and the actuator pressure of the meter-out edge 
∆pout. To be able to optimize a control system without the influence of an operator, six manually 
generated control signals are specified. The six optimization cycles give different target velocities 
between 0 and 100% of maximum velocity vmax. The velocity profiles of the training cycles are shown 
in Figure 15.

Four criteria are considered to evaluate the parameter sets. If these criteria are fulfilled, the pa-
rameter set will be positively evaluated and thus further optimized. On one hand side, it is consid-
ered what improvements are achieved in the overall system due to a changed parameter set. For this 
purpose, the sum of the energy consumption Ei as well as the control deviation γi for all of the six 
optimization cycles are considered. Thus, the following two conditions result:

 � The total energy consumption of the current parameter set is less than the total energy consump-
tion of the best parameter so far (Equation 5).

 
Zur Bewertung der Parametersätze werden vier Kriterien betrachtet. Diese müssen erfüllt werden, da-
mit ein Parametersatz positiv bewertet und somit weiter optimiert wird. Zum einen wird hierbei be-
trachtet in wie weit ein veränderter Parametersatz eine Verbesserung im Gesamtsystem bewirkt. Hier-
für wird die Summe des Energieverbrauchs 𝐸𝐸𝑖𝑖  bei allen der sechs Optimierungszyklen bzw. die Summe 
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Um zu verhindern, dass das Gesamt-KNN in einzelnen Bereichen übermäßig optimiert wird, wäh-
rend in anderen Betriebsbereichen sich das Systemverhalten verschlechtert, wird zur Bewertung auch 
der Energieverbrauch bzw. die Steuerungsabweichung von jedem einzelnen Optimierungszyklus be-
trachtet. 

▪ Der Energieverbrauch 𝐸𝐸𝑖𝑖  bei jedem einzelnen der sechs Optimierungszyklen darf maximal 
5 % größer sein als der Energieverbrauch 𝐸𝐸𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, welcher vom bislang besten Parameter-
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ximal 2 % größer sein als die Steuerungsabweichung 𝛾𝛾𝑖𝑖,0, welche mit dem ursprünglichen 
Parametersatz für den betreffenden Optimierungszyklus erreicht wurde (Gl. 8). 
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Für die Optimierung wurden auf einem institutseigenen Computer 41 Generationen an Parame-
tersätzen berechnet. In Tabelle 2 sind die Systemdaten für den zur Optimierung verwendeten Compu-
ter dargestellt. Die Rechendauer betrug insgesamt 90 Stunden. 

Tabelle 2: Systemdaten des verwendeten Computers zur Optimierung des KNN 
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Abbildung 16 stellt je Generation die Summe des Energieverbrauchs (Trainingsfitness), welcher insge-
samt durch die sechs Optimierungszyklen beim besten Individuum der jeweiligen Generation verur-
sacht wird, dar. Das Ergebnis hat sich nach 41 Generationen um ca. 14,6 % verbessert.  

 (Eq. 5)
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In order to prevent the All-Up ANN from being overfitted in some areas while the system behavior 
deteriorates in other operating areas, the energy consumption or control deviation from each individ-
ual optimization cycle is also considered. The energy consumption Ei in each of the six optimization 
cycles must not exceed 5% of the energy consumption Ei,best, which was achieved by the best param-
eter set in the respective optimization cycle (Equation 7).

Ei ! < Ei,best ∙ 1,05; i = 1 … 6 (Eq. 7)

 � The control deviation γi in each of the six optimization cycles must not exceed 2% of the control 
deviation γi,0, which was achieved by the initial parameter set for the respective optimization 
cycle (Equation 8).

γi ! < γi,0 ∙ 1,02; i = 1 … 6 (Eq. 8)

For the optimization 41 generations of parameter sets were calculated on an institute-owned com-
puter. Table 2 shows the system data for the computer used for optimization. The total calculation 
time was 90 hours.

Table 2: System data of the computer used to optimize the All-Up ANN

Operating  
system

Number of 
processors

Processor  
type

Clock frequency 
in GHz

Number of proces-
sor cores per pro-
cessor

Working memory 
in GB

Windows Server 
2008 R2 Enterprise

2 Intel Xenon 
CPU X5680

3,33 6 48

Results of optimization with reinforcement learning 
Figure 16 shows for each generation the sum of the energy consumption (training fitness), which is 
caused by the six optimization cycles for best individual of the respective generation. The result has 
improved by approx. 14.6% after 41 generations. Figure 16 shows, that the greatest improvement 
occurred between 6th and 12th generation. A further significant improvement can be seen between 
20th and 25th generation. When major improvements will occur and whether the parameter set found 
in Generation 41 is the best solution, cannot be clearly identified due to the black box properties of 
an ANN. 
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Figure 17 shows the relative energy consumption for the individual optimization cycles E (left) 
and the relative control deviation γ (right) of the control system with initial and optimized parameter 
set for the All-Up ANN. A maximum reduction of total energy consumption by ∆E ≈ 14.6% compared 
to the initial All-Up ANN control can be achieved for the optimization cycles. It can be seen that the 
energy consumption shows an improvement at each optimization cycle. The total control deviation is 
reduced on average by ∆γ ≈ 4.33%.

During the training of ANN overfitting is possible for various reasons (Goodfellow et al. 2018). 
An overfitting can be checked by using the All-Up ANN under several test conditions and using the 
same evaluation criteria for comparison. For this reason, the optimized All-Up ANN control system 
is tested on eleven test cycles, which represent as heterogeneous operating areas as possible. This 
time, the test cycles consist of defined path trajectories, which are run by an operator model (Figure 
18). The path trajectories are selected in such a way that the resulting target velocities differ from the 
training cycles. 
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Figure 16: Development of energy consumption over generations of parameter sets
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Figure 17: Relative energy consumption E regarding the maximum energy consumption of all values Emax (left); rela-
tive control deviation γ with regard to the maximum control deviation of all values γmax for all six optimization cycles 
(right)



LANDTECHNIK 75(2) 135

Figure 19 shows the energy consumption E and the control deviation γ of the All-Up ANN control 
systems with initial and optimized parameter set for all eleven test cycles. In all eleven test cycles, 
the total energy consumption of the optimized All-Up ANN control system is on average reduced by 
∆E ≈ 14.44% compared to the initial All-Up ANN control system. The total control deviation could be 
reduced on average by ∆γ ≈ 8.13% compared to the initial All-Up ANN control system. The energy 
consumption of the system with optimized parameter set is in none of the eleven test cycles worse 
than with initial parameter set. The control deviation of the system with optimized parameter set is 
better than initial parameter set in five of eleven test cycles, worse than initial parameter set in four 
of eleven test cycles and equal to initial parameter set in two of eleven test cycles. The authors judge 
that the optimized parameter set of the All-Up ANN is sufficiently trained due to the results that there 
is no overfitting. 
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Figure 19: Relative energy consumption E regarding the maximum energy consumption of all values Emax (left);  
relative control deviation γ regard to the maximum control deviation of all values γmax for all eleven test cycles 
(right)
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Figure 18: Test cycles as default for the operator model to check whether there is an overfitting of the All-Up ANN
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Comparison of conventional control, reference control and optimized all-up ANN 
control
The controllability and energy requirements of all three control systems - conventional control (conv), 
reference control (ref) and All-Up ANN control (ANN) - are discussed below. The controllability is de-
termined by the relative deviation between nominal and actual trajectory of the outer boom cylinder 
∆xOBC,s (Equation 9). 

 

 (Eq. 9)

The relative deviation between nominal and actual trajectory is on average for the conventional 
control systems ∆xOBC,conv = (0,6 ± 11)‰, for the reference control ∆xOBC,ref = (0,6 ± 10)‰ and for the 
All-Up ANN control ∆xOBC,ANN = (−0,2 ± 4)‰. The paths xs relative to the total extension length of the 
outer boom cylinder x0 are shown in the upper diagram of Figure 20. For a better representation, the 
lower diagram of Figure 20 shows the relative deviations of actual to nominal trajectory in relation to 
the total extension length of the outer boom cylinder x0 in ‰. 

To illustrate the reasons for an increase in energy efficiency, the p-Q timeline of the pump is 
compared in Figure 21. The pressure is related to the maximum system pressure pmax. The flow 
rate is related to the maximum pump flow rate Qmax at a fixed speed n. It can be seen that the refer-
ence control as well as the ANN control system reduce the pressure level by an average of approx. 
∆pref = −2,7 MPa (7,9%) respectively ∆pANN = −2,5 MPa (7,2%). At an approximately equal flow rate 
with an average deviation of ∆Qref = 1,1% respectively ∆QANN = 1,3% to conventional control, the nec-
essary power of the system is reduced.
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Figure 20: Relative path of the outer boom cylinder when using the conventional control system (conv) (top),  
the reference control (ref) and the optimized ANN control; relative deviation of target and actual trajectory ∆x to the 
total extension length of the outer boom cylinder x0 (bottom)
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The result of the reduced pressure level can be seen in the power and energy requirements of the 
pump (Figure 22). The power and energy are limited to the maximum power Pconv,max and energy 
Econv,max of the conventional control system. Between approx. 7 and 10 s as well as approx. 14 and 
16 s it can be seen that the pump power required for the reference and All-Up ANN control is lower 
than for conventional control system. This difference becomes particularly obvious when looking at 
the energy. At the end of a reference cycle, the energy difference of the reference control in relation 
to the conventional control is ∆Eref = −18,7% and those of the All-Up ANN control ∆EANN = −20,5%.
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Figure 22: Curve of the hydraulic pump power (top); sum of the required hydraulic pump energy (bottom) 
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Conclusions
Finally, there are well researched solutions ready-to-use, which offer significant advantages in energy 
efficiency and controllability compared to existing state of the art solutions. Furthermore, this contri-
bution shows that existing complex control algorithms can be imitated by artificial neural networks 
(ANN) and subsequently optimized.

By applying the control algorithms to the function drive of a forestry crane, it could be shown 
that the control strategy of an existing electro-hydraulic flow-on-demand control with independent 
metering (reference control) can be represented by an ANN. This ANN control, with the current state 
of optimization, does not show any significant improvement or deterioration of energy efficiency or 
control quality compared to the reference control. For this paper 41 generations of parameter sets 
were generated using the Pattern Search algorithm. Therefore, it cannot be excluded that further runs 
could lead to a significant improvement. If this would be the case, this method offers the possibility to 
map and optimize other, existing control algorithms as ANN. It should be mentioned that this method 
does not have self-learning properties due to the required training data. Therefore, this method can-
not be used for unknown systems.

It still remains unexplored,
 � how to generate full self-learning control algorithms for electro-hydraulic drives.
 � which behavior the generated All-Up ANN control shows in non-tested test scenarios and cycles.
 � whether it is possible to adapt the generated All-Up ANN control to different power classes of for-

estry cranes with the same systemic structure by applying the reinforcement learning process.
 � whether applying the presented method to other control strategies and machines will lead to 

comparable results. 
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