Hans Jürgen Hellebrand, Volkhard Scholz and Jürgen Kern, Potsdam-Bornim, as well as Yasemin Kavdir, Çanakkale/Turkey

N₂O Emissions in the Cultivation of Energy Crops

The N₂O-emissions from sites with three nitrogen fertilisation levels have been measured through gas chromatography since 1999. The long-term mean nitrogen conversion factor is 0.7 %. Few sporadic but intensive N_2O emission spots are the reason for a fertilisation dependent conversion factor. Whereas the correlation coefficient between N_2O emissions and annual precipitation is high, there is much lower correlation between soil nitrate and N_2O emissions. N_2O emissions result from nitrogen fertilisation, crops and precipitation.

Prof. Dr. rer. nat. habil. H.J. Hellebrand is staff member of the Department Technology Assessment and Substance Cycles, Dr.-Ing. V. Scholz is staff member of the Department Post Harvest Technology and Dr. rer. nat. J. Kern is staff member of the Department Bioengineering, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam; e-mail: *jhellebrand@atb-potsdam.de*

Dr. Y. Kavdir (PhD Michigan State Uni.) is Ass. Professor at Canakkale Onsekiz Mart University, Soil Science Department, Faculty of Agriculture, 17020 Canakkale (Turkey); e-mail: *kavdirya@comu.edu.tr*

Summarized contribution to LANDTECHNIK. You will find the long version under LANDTECHNIK-NET.com

Keywords

Nitrous oxide, N₂O emission factor, energy crops, precipitation, soil nitrate

Literature

Literature references can be called up under LT 05515 via internet http://www.landwirtschaftsverlag.com/landtech/local/literatur.htm.

When the cultivation of energy crops is assessed with regard to greenhouse gas abatement, the nitrogen conversion factor (ratio between N2O-N emissions and Nfertiliser input [1, 2]) plays a significant role. The nitrogen fertiliser-induced emission of N2O may counterbalance the CO2 advantage of biofuels (in case of high nitrogen fertiliser application and conversion factor >2 %), since N₂O as a greenhouse gas contributes to global warming about 300 times more effectively than CO₂ [3]. Farming processes influence N2O emissions. Tillage can affect microbial populations [4], thus produce enhanced N₂O emissions at the beginning of the crop season. N2O emissions from croplands have a great variability [5, 6, 7]. There are different emission peaks lasting for hours or weeks, the source of which is not explicitly known [7, 8, 9]. Spatial variability is mainly caused by heterogeneity in soil properties and agricultural management [5, 6, 10, 11]. Numerous authors studied the emission of N2O dependent on soil type, fertilisation and crop species [e.g. 12, 13, 14, 15,16]. There are still uncertainties regarding the soil specific conversion factor, especially the influence of precipitation, soil moisture, temperature, soil nitrate concentration and other variables. Very high annual emissions of N₂ON between 4.2 and 56.4 kgha⁻¹y⁻¹ were found for some fertilised and non-fertilised meadows and fields [13]. The type of soil determined the N2O soil emis-

sions. On average, using the same crop rotation, 1.5 % of fertiliser-N escaped as N₂O-N from sandy loam, whereas the emissions from loamy silt were only 0.8 % [15]. Since the N₂O emission factor depends on local conditions, the main aim of this study was to determine this factor and its typical variability for the cultivation of energy crops on sandy soils under climatic conditions of Northeast Germany.

Trial Sites and Measuring Technique

The N₂O flux measurements have been performed since 1999 in an experimental field with various energy crops. The field has 40 sites (624 m² each). Ten different plant varieties or plant combinations were arranged as columns (four sites each, labelled as A, B, C, and D) with a distance of 6 m between each column. The different types and levels of fertilisation were applied in four rows, perpendicular to the columns. There were sites with different levels of nitrogen input $(A:150 \text{ kg N ha}^{-1}\text{y}^{-1}; B \text{ and } C:75 \text{ kg N ha}^{-1}\text{y}^{-1})$ supplemented by PK-fertiliser (A), wood ashes (B), and straw ashes (C) and sites without fertilisation (D). The gas flux measurements have been performed four times a week by means of gas flux chambers and an automated gas chromatograph (GC) [20]. In one computer-controlled run up to 64 samples could be analysed. For each level of fertilisation, the N2O emission factor was cal-

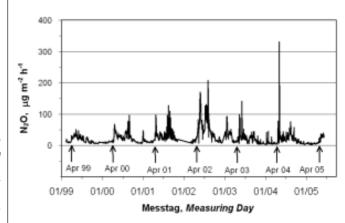


Fig. 1: Time series of N₂O emissions since 1999 (daily means from all measuring spots), Apr JJ: periods of fertilisation (usually April) are indicated by arrows.

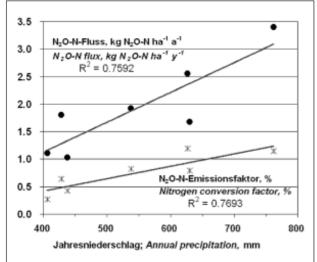


Fig. 2: Mean annual N₂O-N emissions and mean nitrogen conversion factors versus annual precipitation (Sites with 150 kg N ha⁻¹ v^{-1})

culated by taking the difference between the mean values of the fertilised sites and the non-fertilised sites. Since 2003 soil samples (0 to 30 cm depth) were drawn from 12 sites with the three fertiliser levels and four crops. The concentration of mineral nitrogen $(NH_4^+N \text{ and }NO_3^--N)$ was determined by ion chromatography after extracting by distilled water and filtering.

Induced N_2O emissions

The emission of N₂O followed the expected pattern of fertiliser-induced emissions (Fig. 1). The fertiliser induced N₂O emissions had maximum intensities of between 100 and 600 mg N₂O m⁻²h⁻¹ and lasted from four to eight weeks. We also found at fertilised sites temporarily and spatially limited high fluctuations. N₂O emission peaks of up to 1400 mg N₂O m⁻² h⁻¹ were observed from few measuring spots. These findings are in accordance with other studies [e.g. 17 to 27]. The excessive generation of N₂O could result from a sporadic local enhanced mineralisation of soil organic matter or from modi-

Table 1: Mean nitrogen conversion for sites withperennial crops and annual crops,A: 150kgNha⁻¹a⁻¹; B, C: 75kgNha⁻¹a⁻¹

Crops	Nitrogen conversion factor, % Sites		
	Α	B, C	A, B, C
Grass	0,40	0,52	0,48
Willow	0,30	0,36	0,34
Poplar	0,64	0,39	0,47
Mean	0,45	0,42	0,43
Rye	1,07	0,74	0,85
Triticale	0,75	1,12	1,00
Hemp	0,33	0,16	0,21
Rape	1,60	0,60	0,94
Mean	0,94	0,65	0,75

fied biological activity [e.g. 28 to 34]. Tillage and thus the type of crop could influence the N₂O emission rates too. An obvious difference exists between N₂O emission rates from sites with perennial crops and annual crops. The emissions from sites with annual crops (1.5 kg N₂O-N ha⁻¹ y⁻¹) are about 50 % higher than from sites with perennial plants (0.9 kg N₂O-N ha⁻¹ y⁻¹). Fallow land generated the highest annual emission rates (annual mean of 5.3 kg N₂O-N ha⁻¹ y⁻¹). Considering the conversion factor, it was nearly twice for sites with annual crops, compared to perennial crops (*Tab. 1*).

Precipitation, soil nitrate, and N₂O emissions

The maximum of the mean annual N₂O emissions and the maximum of the mean nitrogen conversion factor of the differently fertilised rows were observed in 2002, the year with the highest precipitation since 1999. There is a clear correlation between annual precipitation and annual total N₂O emissions (Fig. 2). The correlation between soil nitrate and N₂O emissions was much lower. The seasonal change of soil nitrate concentration and N2O fluxes were similar, but due to the temporal and local fluctuations of N2O emissions and of nitrate concentrations, the correlation might depend on the locations and time schedule of soil sampling compared to the N2O flux measurements. The soil samples were taken outside the measuring rings (in order not to disturb the soil surface) in distances of 30 to 50 cm, neither synchronous nor daily, but only weekly. There is nearly no correlation between daily flux measurements and weekly nitrate concentration measurements ($R^2 =$ 0.03), whereas a slight correlation exists for the monthly means $(R^2 = 0.20)$. This is interpreted as a result of high dynamic of N_2O fluxes, which can considerably vary in the course of one week. On the other hand, the monthly means reflect more tendencies. Therefore, the correlation increases, as both quantities show similar seasonal changes.

$N_2 O \ emission \ and \ CO_2 \ advantage \ of \ energy \ crops$

The mean N₂O-N emission factor was 0.7 % for all A-, B-, and C-sites (0.9 % for A-sites and 0.6 % for B- and C-sites) for the years from 1999 till 2005. Due to the enhanced N₂O emissions from several measuring spots at A-sites, the mean emission factor increased for these sites and annual crops emitted more N_2O than perennial crops (*Tab. 1*). The results measured here are at the lower end of the range of the N₂O emission factor, which is recommended by IPCC [2] for the fertilisation-based N2O inventories. Thus, it can be stated that the emission of N₂O is comparatively low on the sandy soils of the experimental field. The CO₂ advantage of energy crops will not be reduced by nitrogen fertilising as long as fertilising results in an adequately higher biomass yield [35, 36]. This result is also true for other crops, cultivated on sandy soils as source for renewable vegetable raw materials, if excessive fertilising is avoided.

Acknowledgment

The authors thank the German Academic Exchange Service (DAAD) for funding the stay of Dr. Kavdir at the ATB.